enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. B-heap - Wikipedia

    en.wikipedia.org/wiki/B-heap

    In detail, a b-heap can be implemented in the following way. Poul-Henning Kamp [4] gives two options for the layout of the nodes: one in which two positions per page are wasted, but the strict binary structure of the tree is preserved, and another which uses the whole available space of the pages, but has the tree fail to expand for one level upon entering a new page (The nodes on that level ...

  3. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    A binary heap is defined as a binary tree with two additional constraints: [3] Shape property: a binary heap is a complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.

  4. Binary expression tree - Wikipedia

    en.wikipedia.org/wiki/Binary_expression_tree

    Creating a one-node tree. Continuing, a '+' is read, and it merges the last two trees. Merging two trees. Now, a '*' is read. The last two tree pointers are popped and a new tree is formed with a '*' as the root. Forming a new tree with a root. Finally, the last symbol is read. The two trees are merged and a pointer to the final tree remains on ...

  5. Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze_generation_algorithm

    To create a binary tree maze, for each cell flip a coin to decide whether to add a passage leading up or left. Always pick the same direction for cells on the boundary, and the result will be a valid simply connected maze that looks like a binary tree, with the upper left corner its root. As with Sidewinder, the binary tree maze has no dead ...

  6. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18] A perfect binary tree is a full binary tree.

  7. Tree rotation - Wikipedia

    en.wikipedia.org/wiki/Tree_rotation

    The tree rotation renders the inorder traversal of the binary tree invariant. This implies the order of the elements is not affected when a rotation is performed in any part of the tree. Here are the inorder traversals of the trees shown above: Left tree: ((A, P, B), Q, C) Right tree: (A, P, (B, Q, C))

  8. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    To traverse arbitrary trees (not necessarily binary trees) with depth-first search, perform the following operations at each node: If the current node is empty then return. Visit the current node for pre-order traversal. For each i from 1 to the current node's number of subtrees − 1, or from the latter to the former for reverse traversal, do:

  9. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies: