Search results
Results from the WOW.Com Content Network
Boyle's law demonstrations. The law itself can be stated as follows: For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa ...
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
Boyle's law is used to calculate the unknown volume within the lungs. First, the change in volume of the chest is computed. The initial pressure of the box times its volume is considered equal to the known pressure after expansion times the unknown new volume.
Boyle's law states that at a constant temperature, volume (V) and pressure (P) are inversely related. Therefore, when a constant temperature is maintained (isothermal conditions), Boyle's law can be applied. Consequently, most early plethysmographs required temperature-controlled surroundings and isothermal conditions within the test chamber. [1]
Boyle's_Law_Demonstrations.webm (WebM audio/video file, VP8/Vorbis, length 1 min 32 s, 640 × 480 pixels, 326 kbps overall, file size: 3.57 MB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
The constant is also a combination of the constants from Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. It is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law, the Arrhenius equation, and the Nernst equation.
There are more detailed generalized compressibility factor graphs based on as many as 25 or more different pure gases, such as the Nelson-Obert graphs. Such graphs are said to have an accuracy within 1–2 percent for Z {\displaystyle Z} values greater than 0.6 and within 4–6 percent for Z {\displaystyle Z} values of 0.3–0.6.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...