enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint. The inscribed angle theorem relates the measure of an inscribed angle to that of the central angle subtending the same arc. The inscribed angle theorem appears as Proposition 20 in Book 3 of Euclid's Elements.

  3. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    As stated above, Thales's theorem is a special case of the inscribed angle theorem (the proof of which is quite similar to the first proof of Thales's theorem given above): Given three points A, B and C on a circle with center O, the angle ∠ AOC is twice as large as the angle ∠ ABC. A related result to Thales's theorem is the following:

  4. Incenter–excenter lemma - Wikipedia

    en.wikipedia.org/wiki/Incenter–excenter_lemma

    In geometry, the incenter–excenter lemma is the theorem that the line segment between the incenter and any excenter of a triangle, or between two excenters, is the diameter of a circle (an incenter–excenter or excenter–excenter circle) also passing through two triangle vertices with its center on the circumcircle.

  5. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    If two angles are inscribed on the same chord and on opposite sides of the chord, then they are supplementary. For a cyclic quadrilateral, the exterior angle is equal to the interior opposite angle. An inscribed angle subtended by a diameter is a right angle (see Thales' theorem). The diameter is the longest chord of the circle. Among all the ...

  6. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Then angle APB is the arithmetic mean of the angles AOB and COD. This is a direct consequence of the inscribed angle theorem and the exterior angle theorem. There are no cyclic quadrilaterals with rational area and with unequal rational sides in either arithmetic or geometric progression. [26]

  7. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    Proof of the theorem. We need to prove that AF = FD.We will prove that both AF and FD are in fact equal to FM.. To prove that AF = FM, first note that the angles FAM and CBM are equal, because they are inscribed angles that intercept the same arc of the circle (CD).

  8. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    Inscribed angle theorem for an ellipse. Like a circle, such an ellipse is determined by three points not on a line. For this family of ellipses, one introduces the following q-analog angle measure, which is not a function of the usual angle measure θ: [16] [17]

  9. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    The inscribed angle theorem implies that ,, and ,, are triples of collinear points. Pascal's theorem on hexagon X C A B Y T A {\displaystyle XCABYT_{A}} inscribed in Γ {\displaystyle \Gamma } implies that D , I , E {\displaystyle D,I,E} are collinear.