Search results
Results from the WOW.Com Content Network
However, today the classical equation of entropy, = can be explained, part by part, in modern terms describing how molecules are responsible for what is happening: Δ S {\displaystyle \Delta S} is the change in entropy of a system (some physical substance of interest) after some motional energy ("heat") has been transferred to it by fast-moving ...
In more detail, Clausius explained his choice of "entropy" as a name as follows: [10] I prefer going to the ancient languages for the names of important scientific quantities, so that they may mean the same thing in all living tongues. I propose, therefore, to call S the entropy of a body, after the Greek
Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.
Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...
Produced starting in 1982, the videos make heavy use of historical dramatizations and visual aids to explain physics concepts. The latter were state of the art at the time, incorporating almost eight hours of computer animation created by computer graphics pioneer Jim Blinn along with assistants Sylvie Rueff [3] and Tom Brown at the Jet Propulsion Laboratory.
Boltzmann in his original publication writes the symbol E (as in entropy) for its statistical function. [1] Years later, Samuel Hawksley Burbury, one of the critics of the theorem, [7] wrote the function with the symbol H, [8] a notation that was subsequently adopted by Boltzmann when referring to his "H-theorem". [9]
In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.
However, after sufficient time has passed, the system reaches a uniform color, a state much easier to describe and explain. Boltzmann formulated a simple relationship between entropy and the number of possible microstates of a system, which is denoted by the symbol Ω. The entropy S is proportional to the natural logarithm of this number: