Search results
Results from the WOW.Com Content Network
A non-homogeneous linear recurrence is an equation of the form = + + + + ... For instance, if the characteristic polynomial factors as ...
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]
The recurrence of order two satisfied by the Fibonacci numbers is the canonical example of a homogeneous linear recurrence relation with constant coefficients (see below). The Fibonacci sequence is defined using the recurrence = + with initial conditions
In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or undetermined coefficients with considerably less effort, although those methods leverage heuristics that ...
The logistic equation in the intro is great stuff but nothing non-linear happens after that. I suggest a short recurrence relations article elsewhere with pointers. For now I'll just clean up the start of the linear homogeneous constant coefficients case. --Gentlemath 06:56, 21 February 2009 (UTC)
If the {} and {} are constant and independent of the step index n, then the TTRR is a Linear recurrence with constant coefficients of order 2. Arguably the simplest, and most prominent, example for this case is the Fibonacci sequence , which has constant coefficients a n = b n = 1 {\displaystyle a_{n}=b_{n}=1} .
As the (+) cancel this is a linear recurrence equation with polynomial coefficients which can be solved for an unknown polynomial solution (). There are algorithms to find polynomial solutions . The solutions for z ( n ) {\textstyle z(n)} can then be used again to compute the rational solutions y ( n ) = z ( n ) / u ( n ) {\textstyle y(n)=z(n ...