Search results
Results from the WOW.Com Content Network
By analogy, it relates to a parallelogram just as a cube relates to a square. [a] Three equivalent definitions of parallelepiped are a hexahedron with three pairs of parallel faces, a polyhedron with six faces , each of which is a parallelogram, and; a prism of which the base is a parallelogram.
Example: a parallelepiped is an oblique prism whose base is a parallelogram, or equivalently a polyhedron with six parallelogram faces. Right Prism. A right prism is a prism in which the joining edges and faces are perpendicular to the base faces. [5] This applies if and only if all the joining faces are rectangular. The dual of a right n-prism ...
The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram. The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the ...
The perimeter of the medial triangle equals the semiperimeter of the original triangle, and the area is one quarter of the area of the original triangle. This can be proven by the midpoint theorem of triangles and Heron's formula. The orthocenter of the medial triangle coincides with the circumcenter of the original triangle.
By this usage, the area of a parallelogram or the volume of a prism or cylinder can be calculated by multiplying its "base" by its height; likewise, the areas of triangles and the volumes of cones and pyramids are fractions of the products of their bases and heights. Some figures have two parallel bases (such as trapezoids and frustums), both ...
If the areas of the two parallel faces are A 1 and A 3, the cross-sectional area of the intersection of the prismatoid with a plane midway between the two parallel faces is A 2, and the height (the distance between the two parallel faces) is h, then the volume of the prismatoid is given by [3] = (+ +).
If two opposite faces become squares, the resulting one may obtain another special case of rectangular prism, known as square rectangular cuboid. [b] They can be represented as the prism graph. [3] [c] In the case that all six faces are squares, the result is a cube. [4]
The perimeter of the Varignon parallelogram equals the sum of the diagonals of the original quadrilateral. The diagonals of the Varignon parallelogram are the bimedians of the original quadrilateral. The two bimedians in a quadrilateral and the line segment joining the midpoints of the diagonals in that quadrilateral are concurrent and are all ...