Search results
Results from the WOW.Com Content Network
Schematic of photosynthesis in plants. The carbohydrates produced are stored in or used by the plant. Composite image showing the global distribution of photosynthesis, including both oceanic phytoplankton and terrestrial vegetation. Dark red and blue-green indicate regions of high photosynthetic activity in the ocean and on land, respectively.
Many plants lose much of the remaining energy on growing roots. Most crop plants store ~0.25% to 0.5% of the sunlight in the product (corn kernels, potato starch, etc.). Photosynthesis increases linearly with light intensity at low intensity, but at higher intensity this is no longer the case (see Photosynthesis-irradiance curve). Above about ...
Wilting point describes the dry limit for growing plants. During growing season, soil moisture is unaffected by functional groups or specie richness. [63] Available water capacity is the amount of water held in a soil profile available to plants. As water content drops, plants have to work against increasing forces of adhesion and sorptivity to ...
Topsoil is composed of mineral particles and organic matter and usually extends to a depth of 5-10 inches (13–25 cm). Together these make a substrate capable of holding water and air which encourages biological activity. There are generally a high concentration of roots in topsoil since this is where plants obtain most of their vital nutrients.
Soil biology plays a vital role in determining many soil characteristics. The decomposition of organic matter by soil organisms has an immense influence on soil fertility, plant growth, soil structure, and carbon storage. As a relatively new science, much remains unknown about soil biology and its effect on soil ecosystems.
Leaves generally intercept light and fix carbon, roots take up water and nutrients, and stems and petioles display the leaves in a favourable position and transport various compounds within the plant. Depending on environmental conditions, plants may change their investment scheme, to make plants with relatively bigger root systems, or more leaves.
The primary materials needed for the process of humification are plant detritus and dead animals and microbes, excreta of all soil-dwelling organisms, and also black carbon resulting from past fires. [12] The composition of humus varies with that of primary (plant) materials and secondary microbial and animal products.
The choice of growing media and components to the media help support plant life. Within a greenhouse environment, growers may choose to grow their plants in an aquaponic system where there is no soil used. Growers within a greenhouse setting will often opt for a soilless mix which does not include any actual components of naturally occurring soil.