enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    The multiplicative identity 1 and its additive inverse −1 are always units. More generally, any root of unity in a ring R is a unit: if r n = 1, then r n−1 is a multiplicative inverse of r. In a nonzero ring, the element 0 is not a unit, so R × is not closed under addition.

  3. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  4. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    The axioms of modules imply that (−1)x = −x, where the first minus denotes the additive inverse in the ring and the second minus the additive inverse in the module. Using this and denoting repeated addition by a multiplication by a positive integer allows identifying abelian groups with modules over the ring of integers.

  5. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    The inverse or multiplicative inverse (for avoiding confusion with additive inverses) of a unit x is denoted , or, when the multiplication is commutative, . The additive identity 0 is never a unit, except when the ring is the zero ring, which has 0 as its unique element.

  6. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...

  7. −1 - Wikipedia

    en.wikipedia.org/wiki/%E2%88%921

    Exponentiation to negative integers can be further extended to invertible elements of a ring by defining x −1 as the multiplicative inverse of x; in this context, these elements are considered units. [1]: p.49 In a polynomial domain F [x] over any field F, the polynomial x has no inverse. If it did have an inverse q(x), then there would be [5]

  8. Negative number - Wikipedia

    en.wikipedia.org/wiki/Negative_number

    The additive inverse of a number is unique, as is shown by the following proof. As mentioned above, an additive inverse of a number is defined as a value which when added to the number yields zero. Let x be a number and let y be its additive inverse. Suppose y′ is another additive inverse of x.

  9. Semiring - Wikipedia

    en.wikipedia.org/wiki/Semiring

    Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distributive lattices. The smallest semiring that is not a ring is the two-element Boolean algebra, for instance with logical disjunction as