enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    Right-hand rule for cross product. The cross product of vectors and is a vector perpendicular to the plane spanned by and with the direction given by the right-hand rule: If you put the index of your right hand on and the middle finger on , then the thumb points in the direction of . [4] Fleming's right hand rule

  3. FBI mnemonics - Wikipedia

    en.wikipedia.org/wiki/FBI_mnemonics

    The various FBI mnemonics (for electric motors) show the direction of the force on a conductor carrying a current in a magnetic field as predicted by Fleming's left hand rule for motors [1] and Faraday's law of induction. Other mnemonics exist that use a right hand rule for predicting resulting motion from a preexisting current and field.

  4. Fleming's right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Fleming's_right-hand_rule

    Fleming's right-hand rule gives which direction the current flows. The right hand is held with the thumb, index finger and middle finger mutually perpendicular to each other (at right angles), as shown in the diagram. [1] The thumb is pointed in the direction of the motion of the conductor relative to the magnetic field.

  5. Oersted's law - Wikipedia

    en.wikipedia.org/wiki/Oersted's_law

    The direction of the magnetic field at a point, the direction of the arrowheads on the magnetic field lines, which is the direction that the "north pole" of the compass needle points, can be found from the current by the right-hand rule. If the right hand is wrapped around the wire so the thumb points in the direction of the current ...

  6. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The direction of force on the charge can be determined by a mnemonic known as the right-hand rule (see the figure). [note 3] Using the right hand, pointing the thumb in the direction of the current, and the fingers in the direction of the magnetic field, the resulting force on the charge points outwards from the palm. The force on a negatively ...

  7. Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Lorentz_force

    Right-hand rule for a current-carrying wire in a magnetic field B. When a wire carrying an electric current is placed in a magnetic field, each of the moving charges, which comprise the current, experiences the Lorentz force, and together they can create a macroscopic force on the wire (sometimes called the Laplace force).

  8. Faraday paradox - Wikipedia

    en.wikipedia.org/wiki/Faraday_paradox

    The magnetic field B of a charge is: [12] ... In Figure 1 this force (on a positive charge, not an electron) is outward toward the rim according to the right-hand rule.

  9. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    An illustration of the Kelvin–Stokes theorem with surface Σ, its boundary ∂Σ, and orientation n set by the right-hand rule. The Maxwell–Faraday equation states that a time-varying magnetic field always accompanies a spatially varying (also possibly time-varying), non-conservative electric field, and vice versa. The Maxwell–Faraday ...