Search results
Results from the WOW.Com Content Network
Clock signal and legend. In electronics and especially synchronous digital circuits, a clock signal (historically also known as logic beat) [1] is an electronic logic signal (voltage or current) which oscillates between a high and a low state at a constant frequency and is used like a metronome to synchronize actions of digital circuits.
There are two types of violation that can be caused by clock skew. One problem is caused when the clock reaches the first register and the clock signal towards the second register travels slower than output of the first register into the second register - the output of the first register reaches the second register input faster and therefore is clocked replacing the initial data on the second ...
In synchronous logic circuits, an electronic oscillator generates a repetitive series of equally spaced pulses called the clock signal. The clock signal is supplied to all the components of the IC. Flip-flops only flip when triggered by the edge of the clock pulse, so changes to the logic signals throughout the circuit begin at the same time ...
In digital electronics, a synchronous circuit is a digital circuit in which the changes in the state of memory elements are synchronized by a clock signal. In a sequential digital logic circuit, data is stored in memory devices called flip-flops or latches. The output of a flip-flop is constant until a pulse is applied to its "clock" input ...
A signal from a peripheral device would reset this latch, resuming CPU operation. The hardware logic must gate the latch control inputs as necessary to ensure that a latch output transition does not cause the clock signal level to instantaneously change and cause a clock pulse, either high or low, that is shorter than normal.
In digital electronic design a clock domain crossing (CDC), or simply clock crossing, is the traversal of a signal in a synchronous digital circuit from one clock domain into another. If a signal does not assert long enough and is not registered, it may appear asynchronous on the incoming clock boundary.
A flipflop-based dual-rank synchronizer can be used to synchronize an external trigger to a counter-based delay generator, as in case (1) above. It is then possible to measure the skew between the input trigger and the local clock and adjust the vernier delay on a shot-by-shot basis, to compensate for most of the trigger-to-clock jitter.
In digital circuits, a runt pulse is a narrow pulse that, due to non-zero rise and fall times of the signal, does not reach a valid high or low level. A runt pulse may occur when switching between asynchronous clocks; or as the result of a race condition in which a signal takes two separate paths through a circuit, which may have different delays, and is then recombined to form a glitch; or ...