Search results
Results from the WOW.Com Content Network
If the direction of derivative is not repeated, it is called a mixed partial derivative. If all mixed second order partial derivatives are continuous at a point (or on a set), f is termed a C 2 function at that point (or on that set); in this case, the partial derivatives can be exchanged by Clairaut's theorem:
Thus, the second partial derivative test indicates that f(x, y) has saddle points at (0, −1) and (1, −1) and has a local maximum at (,) since = <. At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point.
In other words, the matrix of the second-order partial derivatives, known as the Hessian matrix, is a symmetric matrix. Sufficient conditions for the symmetry to hold are given by Schwarz's theorem, also called Clairaut's theorem or Young's theorem. [1] [2]
In mathematics, the Hessian matrix, Hessian or (less commonly) Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables.
See the example figure on the right. Appended to this nonlinear edge is an edge weight that is the second-order partial derivative of the nonlinear node in relation to its predecessors. This nonlinear edge is subsequently pushed down to further predecessors in such a way that when it reaches the independent nodes, its edge weight is the second ...
For other stencil configurations and derivative orders, the Finite Difference Coefficients Calculator is a tool that can be used to generate derivative approximation methods for any stencil with any derivative order (provided a solution exists).
for the higher order partial derivatives is justified in this situation. The same is true if all the (k − 1)-th order partial derivatives of f exist in some neighborhood of a and are differentiable at a. [13] Then we say that f is k times differentiable at the point a.
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.