Search results
Results from the WOW.Com Content Network
When an oxidizer (Ox) accepts a number z of electrons ( e −) to be converted in its reduced form (Red), the half-reaction is expressed as: + The reaction quotient (Q r), also often called the ion activity product (IAP), is the ratio between the chemical activities (a) of the reduced form (the reductant, a Red) and the oxidized form (the oxidant, a Ox).
In the process of oxidizing the organic substances found in the water sample, potassium dichromate is reduced (since in all redox reactions, one reagent is oxidized and the other is reduced), forming Cr 3+. The amount of Cr 3+ is determined after oxidization is complete and is used as an indirect measure of the organic contents of the water sample.
In thermodynamics, the reduced properties of a fluid are a set of state variables scaled by the fluid's state properties at its critical point. These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor , provide the basis for the simplest form of the theorem of corresponding states .
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
Reaction stoichiometry describes the 2:1:2 ratio of hydrogen, oxygen, and water molecules in the above equation. The molar ratio allows for conversion between moles of one substance and moles of another. For example, in the reaction 2 CH 3 OH + 3 O 2 → 2 CO 2 + 4 H 2 O. the amount of water that will be produced by the combustion of 0.27 moles ...
If one adds 1 litre of water to this solution, the salt concentration is reduced. The diluted solution still contains 10 grams of salt (0.171 moles of NaCl). Mathematically this relationship can be shown by equation: = where c 1 = initial concentration or molarity; V 1 = initial volume
For oxygen (O) the oxidation number began as 0 and decreased to 2−. These changes can be viewed as two "half-reactions" that occur concurrently: Oxidation half reaction: Fe 0 → Fe 3+ + 3e −; Reduction half reaction: O 2 + 4e − → 2 O 2−; Iron (Fe) has been oxidized because the oxidation number increased.
Water splitting can be done at higher pH values as well however the standard potentials will vary according to the Nernst equation and therefore shift by -59 mV for each pH unit increase. However, the total cell potential (difference between oxidation and reduction half cell potentials) will remain 1.23 V.