Search results
Results from the WOW.Com Content Network
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
The molecular mass and relative molecular mass are distinct from but related to the molar mass. The molar mass is defined as the mass of a given substance divided by the amount of the substance, and is expressed in grams per mol (g/mol). That makes the molar mass an average of many particles or molecules (potentially containing different ...
The mass-average molecular mass, M w, is also related to the fractional monomer conversion, p, in step-growth polymerization (for the simplest case of linear polymers formed from two monomers in equimolar quantities) as per Carothers' equation: ¯ = + ¯ = (+), where M o is the molecular mass of the repeating unit.
Atomic number Element Molar mass Formal standard atomic weight s.a.w., formal short Note Z calculated; g·mol −1 A r, standard [2] A r, abridged and conventional [2]; C 9 H 8 O 4: 180.159 g·mol −1
The Dumas method of molecular weight determination was historically a procedure used to determine the molecular weight of an unknown volatile substance. [1] [2]The method was designed by the French chemist Jean Baptiste André Dumas, after whom the procedure is now named.
In chemistry, the mass fraction of a substance within a mixture is the ratio (alternatively denoted ) of the mass of that substance to the total mass of the mixture. [1] Expressed as a formula, the mass fraction is:
Formula of glass component Desired concentration of glass component, wt% Molar mass of glass component, g/mol Batch component Formula of batch component Molar mass of batch component, g/mol SiO 2: 67 60.0843 Sand SiO 2: 60.0843 Na 2 O 12 61.9789 Trona: Na 3 H(CO 3) 2 *2H 2 O 226.0262 CaO 10 56.0774 Lime CaCO 3: 100.0872 Al 2 O 3: 5 101.9613 ...
Mole to mass: Convert moles of Ag to grams of Ag produced; The complete balanced equation would be: Cu + 2 AgNO 3 → Cu(NO 3) 2 + 2 Ag. For the mass to mole step, the mass of copper (16.00 g) would be converted to moles of copper by dividing the mass of copper by its molar mass: 63.55 g/mol.