Search results
Results from the WOW.Com Content Network
The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. [2] The numbers of points in the base and in layers parallel to the base are given by polygonal numbers of the given number of sides, while the numbers of points in each triangular side is ...
A pyramid with side length 5 contains 35 spheres. Each layer represents one of the first five triangular numbers. A truncated triangular pyramid number [1] is found by removing some smaller tetrahedral number (or triangular pyramidal number) from each of the vertices of a bigger tetrahedral number.
A pyramid with side length 5 contains 35 spheres. Each layer represents one of the first five triangular numbers. A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron.
These tetrahedra cover their triangular base, and the resulting polyhedron has six triangles, five vertices, and nine edges. [3] A triangular bipyramid is said to be right if the tetrahedra are symmetrically regular and both of their apices are on a line passing through the center of the base; otherwise, it is oblique. [4] [5]
The base regularity of a pyramid's base may be classified based on the type of polygon: one example is the star pyramid in which its base is the regular star polygon. [24] The truncated pyramid is a pyramid cut off by a plane; if the truncation plane is parallel to the base of a pyramid, it is called a frustum.
The tetrahedron is one kind of pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron, the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid".
It was well understood that some numbers could have many figurations, e.g. 36 is a both a square and a triangle and also various rectangles. The modern study of figurate numbers goes back to Pierre de Fermat , specifically the Fermat polygonal number theorem .
A triangular-pyramid version of the cannonball problem, which is to yield a perfect square from the N th Tetrahedral number, would have N = 48. That means that the (24 × 2 = ) 48th tetrahedral number equals to (70 2 × 2 2 = 140 2 = ) 19600. This is comparable with the 24th square pyramid having a total of 70 2 cannonballs. [5]