Search results
Results from the WOW.Com Content Network
Hydrogen forms many compounds with carbon called the hydrocarbons, and even more with heteroatoms that, due to their association with living things, are called organic compounds. [43] The study of their properties is known as organic chemistry [44] and their study in the context of living organisms is called biochemistry. [45]
For example, a water molecule contains two hydrogen atoms, but does not contain atomic hydrogen (which would refer to isolated hydrogen atoms). Atomic spectroscopy shows that there is a discrete infinite set of states in which a hydrogen (or any) atom can exist, contrary to the predictions of classical physics .
Hydrogen compounds are compounds containing the element hydrogen. In these compounds, hydrogen can form in the +1 and -1 oxidation states. Hydrogen can form compounds both ionically and in covalent substances. It is a part of many organic compounds such as hydrocarbons as well as water and other organic substances.
Hydrogen (1 H) has three naturally occurring isotopes: 1 H, 2 H, and 3 H. 1 H and 2 H are stable, while 3 H has a half-life of 12.32(2) years. [3] [nb 1] Heavier isotopes also exist; all are synthetic and have a half-life of less than 1 zeptosecond (10 −21 s). [4] [5] Of these, 5 H is the least stable, while 7 H is the most.
Hydrogen is set to an abundance of 12 on this scale. The Sun's photosphere consists mostly of hydrogen and helium; the helium abundance varies between about 10.3 and 10.5 depending on the phase of the solar cycle; [13] carbon is 8.47, neon is 8.29, oxygen is 7.69 [14] and iron is estimated at 7.62. [15]
One or more of the hydrogen atoms can be replaced with other atoms, for example chlorine or another halogen: this is called a substitution reaction. An example is the conversion of methane to chloroform using a chlorination reaction. Halogenating a hydrocarbon produces something that is not a hydrocarbon. It is a very common and useful process.
Natural hydrogen (known as white hydrogen, ... According to the Financial Times, there are 5 trillion tons of natural hydrogen resources worldwide. [1]
The concentration of hydrogen ions and pH are inversely proportional; in an aqueous solution, an increased concentration of hydrogen ions yields a low pH, and subsequently, an acidic product. By definition, an acid is an ion or molecule that can donate a proton, and when introduced to a solution it will react with water molecules (H 2 O) to ...