Search results
Results from the WOW.Com Content Network
Phospholipids [1] are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typically have omega-3 fatty acids EPA and DHA integrated as part of the phospholipid molecule. [2]
Phospholipids are the primary lipids composing cellular membranes. Phospholipids can be saponified, which releases the fatty acids contained in their diglyceride tail. Once the phospholipids of an unknown sample are saponified, the composition of the resulting PLFA can be compared to the PLFA of known organisms to determine the identity of the ...
A freshwater aquatic food web. The blue arrows show a complete food chain (algae → daphnia → gizzard shad → largemouth bass → great blue heron). A food web is the natural interconnection of food chains and a graphical representation of what-eats-what in an ecological community.
The word liposome derives from two Greek words: lipo ("fat") and soma ("body"); it is so named because its composition is primarily of phospholipid.. Liposomes were first described by British hematologist Alec Douglas Bangham [10] [11] [12] in 1961 at the Babraham Institute, in Cambridge—findings that were published 1964.
Phosphorus is a component of every cell, as well as important metabolites, including DNA, RNA, ATP, and phospholipids. Also important in pH regulation. It is an important electrolyte in the form of phosphate. [71] Food sources include cheese, egg yolk, milk, meat, fish, poultry, whole-grain cereals, and many others. [68]
An example of a topological food web (image courtesy of USDA) [1]. The soil food web is the community of organisms living all or part of their lives in the soil. It describes a complex living system in the soil and how it interacts with the environment, plants, and animals.
However, the lipophilic "tails" of surfactant molecules have less contact with water when they are part of a micelle—this being the basis for the energetic drive for micelle formation. In a micelle, the hydrophobic tails of several surfactant molecules assemble into an oil-like core, the most stable form of which having no contact with water.
Scheme of a micelle spontaneously formed by phospholipids in an aqueous solution. When phospholipids or simple lipids like fatty acids are placed in water, the molecules spontaneously arrange such that the hydrophobic tails are shielded from the water, resulting in the formation of membrane structures such as bilayers, vesicles, and micelles. [27]