Search results
Results from the WOW.Com Content Network
If cross-validation is used to decide which features to use, an inner cross-validation to carry out the feature selection on every training set must be performed. [30] Performing mean-centering, rescaling, dimensionality reduction, outlier removal or any other data-dependent preprocessing using the entire data set.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Filter feature selection is a specific case of a more general paradigm called structure learning.Feature selection finds the relevant feature set for a specific target variable whereas structure learning finds the relationships between all the variables, usually by expressing these relationships as a graph.
Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.
The amount of overfitting can be tested using cross-validation methods, that split the sample into simulated training samples and testing samples. The model is then trained on a training sample and evaluated on the testing sample.
Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the model: there are many kinds of cross validation. Predictive simulation is used to compare simulated data to actual data.
Cross-validation (statistics)#Nested cross-validation; This page is a redirect. The following categories are used to track and monitor this redirect:
The conformal prediction first arose in a collaboration between Gammerman, Vovk, and Vapnik in 1998; [1] this initial version of conformal prediction used what are now called E-values though the version of conformal prediction best known today uses p-values and was proposed a year later by Saunders et al. [7] Vovk, Gammerman, and their students and collaborators, particularly Craig Saunders ...