enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equilibrium thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_thermodynamics

    An equilibrium state is mathematically ascertained by seeking the extrema of a thermodynamic potential function, whose nature depends on the constraints imposed on the system. For example, a chemical reaction at constant temperature and pressure will reach equilibrium at a minimum of its components' Gibbs free energy and a maximum of their entropy.

  3. Le Chatelier's principle - Wikipedia

    en.wikipedia.org/wiki/Le_Chatelier's_principle

    If we were to decrease pressure by increasing volume, the equilibrium of the above reaction will shift to the left, because the reactant side has a greater number of moles than does the product side. The system tries to counteract the decrease in partial pressure of gas molecules by shifting to the side that exerts greater pressure.

  4. Thermal fluctuations - Wikipedia

    en.wikipedia.org/wiki/Thermal_fluctuations

    All thermal fluctuations become larger and more frequent as the temperature increases, and likewise they decrease as temperature approaches absolute zero. Thermal fluctuations are a basic manifestation of the temperature of systems: A system at nonzero temperature does not stay in its equilibrium microscopic state, but instead randomly samples ...

  5. Thermal equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermal_equilibrium

    It is then in internal thermal equilibrium and even in thermodynamic equilibrium. This means that all local parts of the system are in mutual radiative exchange equilibrium. This means that the temperature of the system is spatially uniform. [8] This is so in all cases, including those of non-uniform external force fields.

  6. Thermodynamic state - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_state

    Thermal equilibrium: When the temperature throughout a system is uniform, the system is in thermal equilibrium. Mechanical equilibrium : If at every point within a given system there is no change in pressure with time, and there is no movement of material, the system is in mechanical equilibrium.

  7. Thermodynamic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equilibrium

    Local thermodynamic equilibrium does not require either local or global stationarity. In other words, each small locality need not have a constant temperature. However, it does require that each small locality change slowly enough to practically sustain its local Maxwell–Boltzmann distribution of molecular velocities.

  8. Critical point (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point...

    The commonly known phases solid, liquid and vapor are separated by phase boundaries, i.e. pressuretemperature combinations where two phases can coexist. At the triple point, all three phases can coexist. However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the ...

  9. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The generalized force, X, corresponding to the external parameter x is defined such that is the work performed by the system if x is increased by an amount dx. E.g., if x is the volume, then X is the pressure. The generalized force for a system known to be in energy eigenstate is given by: