Search results
Results from the WOW.Com Content Network
All India Secondary School Examination, commonly known as the class 10th board exam, is a centralized public examination that students in schools affiliated with the Central Board of Secondary Education, primarily in India but also in other Indian-patterned schools affiliated to the CBSE across the world, taken at the end of class 10. The board ...
The greater the current I, the greater the energy stored in the magnetic field and the lower the inductance which is defined = / where is the magnetic flux produced by the coil of wire. The inductance is a measure of the circuit's resistance to a change in current and so inductors with high inductances can also be used to oppose alternating ...
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism .
Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.
Magnetic anisotropy, that is the existence of an easy direction along which the moments align spontaneously in the crystal, corresponds however to "massive" magnons. This is a way of saying that they cost a minimum amount of energy to excite, hence they are very unlikely to be excited as T → 0 {\displaystyle T\rightarrow 0} .
It is a measure of the momentum of the particle, and it refers to the fact that a higher momentum particle will have a higher resistance to deflection by a magnetic field. It is defined as R = Bρ = p/q, where B is the magnetic field, ρ is the gyroradius of the particle due to this field, p is the particle momentum, and q is its charge.
The potential magnetic energy of a magnet or magnetic moment in a magnetic field is defined as the mechanical work of the magnetic force on the re-alignment of the vector of the magnetic dipole moment and is equal to: = The mechanical work takes the form of a torque : = = which will act to "realign" the magnetic dipole with the magnetic field.
In the early 20th century, a few investigators found that igneous rocks had a remanence that was much more intense than remanence acquired in the Earth's field without heating; that heating rocks in the Earth's magnetic field could magnetize them in the direction of the field; and that the Earth's field had reversed its direction in the past.