enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relativistic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Doppler_effect

    The relativistic Doppler effect is the change in frequency, wavelength and amplitude [1] of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect, first proposed by Christian Doppler in 1842 [2]), when taking into account effects described by the special theory of relativity.

  3. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    Stationary sound source produces sound waves at a constant frequency f, and the wave-fronts propagate symmetrically away from the source at a constant speed c. The distance between wave-fronts is the wavelength. All observers will hear the same frequency, which will be equal to the actual frequency of the source where f = f 0.

  4. Airy wave theory - Wikipedia

    en.wikipedia.org/wiki/Airy_wave_theory

    On the other hand, in a frame of reference moving with the mean velocity U (so the mean velocity as observed from this reference frame is zero), the angular frequency is different. It is called the intrinsic angular frequency (or relative angular frequency), denoted σ. So in pure wave motion, with U = 0, both frequencies ω and σ are equal.

  5. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    The researchers calculated a de Broglie wavelength of the most probable C 60 velocity as 2.5 pm. More recent experiments prove the quantum nature of molecules made of 810 atoms and with a mass of 10 123 Da . [ 45 ]

  6. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. [3] [4] The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). For a modulated wave, wavelength may refer to the carrier wavelength of the signal.

  7. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    Even in dispersive media, the frequency f of a sinusoidal wave is equal to the phase velocity v of the wave divided by the wavelength λ of the wave: =. In the special case of electromagnetic waves in vacuum , then v = c , where c is the speed of light in vacuum, and this expression becomes f = c λ . {\displaystyle f={\frac {c}{\lambda }}.}

  8. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).

  9. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    It equals the spatial frequency. For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.