enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vergence (optics) - Wikipedia

    en.wikipedia.org/wiki/Vergence_(optics)

    For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power. A lens with no optical power is called an optical window, having flat, parallel faces. The optical power directly relates to how large positive images will be magnified, and how small negative images will be ...

  3. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    For a thin lens in air, the focal length is the distance from the center of the lens to the principal foci (or focal points) of the lens.For a converging lens (for example a convex lens), the focal length is positive and is the distance at which a beam of collimated light will be focused to a single spot.

  4. Lens - Wikipedia

    en.wikipedia.org/wiki/Lens

    A lens with one convex and one concave side is convex-concave or meniscus. Convex-concave lenses are most commonly used in corrective lenses, since the shape minimizes some aberrations. For a biconvex or plano-convex lens in a lower-index medium, a collimated beam of light passing through the lens converges to a spot (a focus) behind

  5. Real image - Wikipedia

    en.wikipedia.org/wiki/Real_image

    Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point, and this real image is inverted. As the object approaches the focal point the image approaches infinity, and when the object passes the focal point the image becomes virtual and is not ...

  6. Center of curvature - Wikipedia

    en.wikipedia.org/wiki/Center_of_curvature

    This term is generally used in physics regarding the study of lenses and mirrors (see radius of curvature (optics)). It can also be defined as the spherical distance between the point at which all the rays falling on a lens or mirror either seems to converge to (in the case of convex lenses and concave mirrors) or diverge from (in the case of ...

  7. Lens (geometry) - Wikipedia

    en.wikipedia.org/wiki/Lens_(geometry)

    A lens contained between two circular arcs of radius R, and centers at O 1 and O 2. In 2-dimensional geometry, a lens is a convex region bounded by two circular arcs joined to each other at their endpoints. In order for this shape to be convex, both arcs must bow outwards (convex-convex). This shape can be formed as the intersection of two ...

  8. Virtual image - Wikipedia

    en.wikipedia.org/wiki/Virtual_image

    A converging lens (one that is thicker in the middle than at the edges) or a convex mirror is also capable of producing a virtual image if the object is within the focal length. Such an image will be magnified. In contrast, an object placed in front of a converging lens or concave mirror at a position beyond the focal length produces a real image.

  9. Least distance of distinct vision - Wikipedia

    en.wikipedia.org/wiki/Least_distance_of_distinct...

    The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror.. In optometry, the least distance of distinct vision (LDDV) or the reference seeing distance (RSD) is the closest someone with "normal" vision (20/20 vision) can comfortably look at something. [1]