Search results
Results from the WOW.Com Content Network
A separation process is a method that converts a mixture or a solution of chemical substances into two or more distinct product mixtures, [1] a scientific process of separating two or more substances in order to obtain purity.
Chromatography is a physical method of separation that distributes the components you want to separate between two phases, one stationary (stationary phase), the other (the mobile phase) moving in a definite direction. Cold ethanol precipitation, developed by Cohn in 1946, manipulates pH, ionic strength, ethanol concentration and temperature to ...
Chromatography, pronounced / ˌ k r oʊ m ə ˈ t ɒ ɡ r ə f i /, is derived from Greek χρῶμα chrōma, which means "color", and γράφειν gráphein, which means "to write".". The combination of these two terms was directly inherited from the invention of the technique first used to separate biological pigme
Chromatography columns of different types are used in both gas and liquid chromatography: Liquid chromatography: Traditional chromatography columns were made of glass. Modern columns are mostly made of borosilicate glass, acrylic glass or stainless steel. To prevent the stationary phase from leaking out of the column interior a polymer ...
Paper chromatography is one method for testing the purity of compounds and identifying substances. Paper chromatography is a useful technique because it is relatively quick and requires only small quantities of material. Separations in paper chromatography involve the principle of partition.
A chromatography detector is a device that detects and quantifies separated compounds as they elute from the chromatographic column.These detectors are integral to various chromatographic techniques, such as gas chromatography, [1] liquid chromatography, and high-performance liquid chromatography, [2] and supercritical fluid chromatography [3] among others.
Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. [1] It works on almost any kind of charged molecule —including small inorganic anions, [ 2 ] large proteins , [ 3 ] small nucleotides , [ 4 ] and amino acids .
Electron capture detector developed by James Lovelock in the Science Museum, London Electron capture detector, Science History Institute. The electron capture detector is used for detecting electron-absorbing components (high electronegativity) such as halogenated compounds in the output stream of a gas chromatograph.