Search results
Results from the WOW.Com Content Network
S 1: a 1-sphere is a circle of radius r; S 2: a 2-sphere is an ordinary sphere; S 3: a 3-sphere is a sphere in 4-dimensional Euclidean space. Spheres for n > 2 are sometimes called hyperspheres. The n-sphere of unit radius centered at the origin is denoted S n and is often referred to as "the" n-sphere. The ordinary sphere is a ...
If the sphere is isometrically embedded in Euclidean space, the sphere's intersection with a plane is a circle, which can be interpreted extrinsically to the sphere as a Euclidean circle: a locus of points in the plane at a constant Euclidean distance (the extrinsic radius) from a point in the plane (the extrinsic center). A great circle lies ...
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
The sphere has a radius of 1, and so the side lengths and lower case angles are equivalent (see arc length). The angle A (respectively, B and C) may be regarded either as the angle between the two planes that intersect the sphere at the vertex A, or, equivalently, as the angle between the tangents of the great circle arcs where they meet at the ...
When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...
The classical equation of a unit sphere is that of the ellipsoid with a radius of 1 and no alterations to the -, -, or - axes: x 2 + y 2 + z 2 = 1 {\displaystyle x^{2}+y^{2}+z^{2}=1} The volume of the unit ball in Euclidean n {\displaystyle n} -space, and the surface area of the unit sphere, appear in many important formulas of analysis .
The formula for the volume of the -ball can be derived from this by integration. Similarly the surface area element of the -sphere of radius , which generalizes the area element of the -sphere, is given by
In Euclidean n-space, an (open) n-ball of radius r and center x is the set of all points of distance less than r from x. A closed n-ball of radius r is the set of all points of distance less than or equal to r away from x. In Euclidean n-space, every ball is bounded by a hypersphere.