Search results
Results from the WOW.Com Content Network
Electrokinetic phenomena are a family of several different effects that occur in heterogeneous fluids, or in porous bodies filled with fluid, or in a fast flow over a flat surface. The term heterogeneous here means a fluid containing particles.
In general, the phenomena relate to the direct conversion of electrical energy into kinetic energy, and vice versa. In the first instance, shaped electrostatic fields (ESF's) create hydrostatic pressure (HSP, or motion) in dielectric media. When such media are fluids, a flow is produced. If the dielectric is a vacuum or a solid, no flow is ...
Electrokinetics or electrokinetic may refer to: Electrohydrodynamics, the study of the dynamics of electrically charged fluids; Electrokinetic phenomena, a family of several different effects that occur in heterogeneous fluids; Zeta potential, a scientific term for electrokinetic potential
The streaming potential is also the primary electrokinetic phenomenon for the assessment of the zeta potential at the solid material-water interface. A corresponding solid sample is arranged in such a way to form a capillary flow channel. Materials with a flat surface are mounted as duplicate samples that are aligned as parallel plates.
Sedimentation potential. Electrokinetic phenomena are a family of several different effects that occur in heterogeneous fluids or in porous bodies filled with fluid. The sum of these phenomena deals with the effect on a particle from some outside resulting in a net electrokinetic effect.
Electrokinetic phenomena refers to a variety of effects resulting from an electrical double layer. A noteworthy example is electrophoresis, where a charged particle suspended in a media will move as a result of an applied electrical field. [17]
visualized induced-charge electrokinetic flow pattern around a carbon-steel sphere (diameter = 1.2 mm). Four induced vortices are shown using fluorescent particles with a diameter of 1.90 μm. The DC electric field is applied from left to right and equals 40V/cm. The dashed line represents the particle boundary.
The "Biefeld–Brown effect" was the name given to a phenomenon observed by Thomas Townsend Brown while he was experimenting with X-ray tubes during the 1920s while he was still in high school. When he applied a high voltage electrical charge to a Coolidge tube that he placed on a scale, Brown noticed a difference in the tube's mass depending ...