Search results
Results from the WOW.Com Content Network
this expression can be used to decompose higher powers as a linear function of lower powers, which in turn can be decomposed all the way down to a linear combination of and 1. The resulting recurrence relationships yield Fibonacci numbers as the linear coefficients : φ n = F n φ + F n − 1 . {\displaystyle \varphi ^{n}=F_{n}\varphi +F_{n-1}.}
In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function . The various studies of the behaviour of the divisor function are sometimes called divisor problems .
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
If a and b have different signs, define a + b to be the difference between |a| and |b|, with the sign of the term whose absolute value is larger. [61] As an example, −6 + 4 = −2; because −6 and 4 have different signs, their absolute values are subtracted, and since the absolute value of the negative term is larger, the answer is negative.
A related function counts prime powers with weight 1 for primes, 1/2 for their squares, 1/3 for cubes, etc. It is the summation function of the arithmetic function which takes the value 1/ k on integers which are the k -th power of some prime number, and the value 0 on other integers.
When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers (2 + 14 = 16). Thus 16 × 5 = 80 is twice the sum.
The Brahmagupta–Fibonacci identity states that the product of two sums of two squares is a sum of two squares. Euler's method relies on this theorem but it can be viewed as the converse, given n = a 2 + b 2 = c 2 + d 2 {\displaystyle n=a^{2}+b^{2}=c^{2}+d^{2}} we find n {\displaystyle n} as a product of sums of two squares.