Search results
Results from the WOW.Com Content Network
It is named after its inventor, Ronald Fisher, and is one of a class of exact tests, so called because the significance of the deviation from a null hypothesis (e.g., p-value) can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many statistical tests.
Fisher's method is typically applied to a collection of independent test statistics, usually from separate studies having the same null hypothesis. The meta-analysis null hypothesis is that all of the separate null hypotheses are true. The meta-analysis alternative hypothesis is that at least one of the separate alternative hypotheses is true.
The explicit null hypothesis of Fisher's Lady tasting tea example was that the Lady had no such ability, which led to a symmetric probability distribution. The one-tailed nature of the test resulted from the one-tailed alternate hypothesis (a term not used by Fisher). The null hypothesis became implicitly one-tailed.
The null hypothesis is that the subject has no ability to distinguish the teas. In Fisher's approach, there was no alternative hypothesis , [ 2 ] unlike in the Neyman–Pearson approach . The test statistic is a simple count of the number of successful attempts to select the four cups prepared by a given method.
T(y) is the value of the test statistic for an outcome y, with larger values of T representing cases which notionally represent greater departures from the null hypothesis, and where the sum ranges over all outcomes y (including the observed one) that have the same value of the test statistic obtained for the observed sample x , or a larger one.
Here the null hypothesis is by default that two things are unrelated (e.g. scar formation and death rates from smallpox). [7] The null hypothesis in this case is no longer predicted by theory or conventional wisdom, but is instead the principle of indifference that led Fisher and others to dismiss the use of "inverse probabilities". [8]
The F table serves as a reference guide containing critical F values for the distribution of the F-statistic under the assumption of a true null hypothesis. It is designed to help determine the threshold beyond which the F statistic is expected to exceed a controlled percentage of the time (e.g., 5%) when the null hypothesis is accurate.
Fisher's exact test can be applied to testing for Hardy–Weinberg proportions. Since the test is conditional on the allele frequencies, p and q, the problem can be viewed as testing for the proper number of heterozygotes. In this way, the hypothesis of Hardy–Weinberg proportions is rejected if the number of heterozygotes is too large or too ...