Search results
Results from the WOW.Com Content Network
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
Picture Name Schläfli symbol Vertex/Face configuration exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex)
As n approaches infinity, the internal angle approaches 180 degrees. For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle.
The interior angles of regular star polygons were first studied by Poinsot, in the same paper in which he describes the four regular star polyhedra: for a regular -gon (a p-gon with central density q), each interior angle is () radians or () degrees. [3] Exterior angle – The exterior angle is the supplementary angle to the interior angle.
The high school exterior angle theorem (HSEAT) says that the size of an exterior angle at a vertex of a triangle equals the sum of the sizes of the interior angles at the other two vertices of the triangle (remote interior angles). So, in the picture, the size of angle ACD equals the size of angle ABC plus the size of angle CAB.
The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles. There are two exterior angles at each vertex of the polygon, each determined by extending one of the two sides of the polygon that meet at the vertex; these two angles are vertical and hence are equal.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it; this is the exterior angle theorem. [34] The sum of the measures of the three exterior angles (one for each vertex) of any triangle is 360 degrees, and indeed, this is true for any convex polygon, no matter ...