enow.com Web Search

  1. Ad

    related to: geometry undefined terms point fundamentals

Search results

  1. Results from the WOW.Com Content Network
  2. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Primitives (undefined terms) are the most basic ideas. Typically they include objects and relationships. In geometry, the objects are things like points, lines and planes while a fundamental relationship is that of incidence – of one object meeting or joining with another. The terms themselves are undefined.

  3. List of mathematical properties of points - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical...

    Antipodal point, the point diametrically opposite to another point on a sphere, such that a line drawn between them passes through the centre of the sphere and forms a true diameter; Conjugate point, any point that can almost be joined to another by a 1-parameter family of geodesics (e.g., the antipodes of a sphere, which are linkable by any ...

  4. Point (geometry) - Wikipedia

    en.wikipedia.org/wiki/Point_(geometry)

    In geometry, a point is an abstract idealization of an exact position, without size, in physical space, [1] or its generalization to other kinds of mathematical spaces.As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist.

  5. Undefined (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Undefined_(mathematics)

    In mathematics, the term undefined refers to a value, function, or other expression that cannot be assigned a meaning within a specific formal system. [ 1 ] Attempting to assign or use an undefined value within a particular formal system, may produce contradictory or meaningless results within that system.

  6. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  7. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    If two points A, B of a line a lie in a plane α, then every point of a lies in α. In this case we say: "The line a lies in the plane α", etc. If two planes α, β have a point A in common, then they have at least a second point B in common. There exist at least four points not lying in a plane.

  8. Mathematical structure - Wikipedia

    en.wikipedia.org/wiki/Mathematical_structure

    A metric: there is a notion of distance between points. A geometry: it is equipped with a metric and is flat. A topology: there is a notion of open sets. There are interfaces among these: Its order and, independently, its metric structure induce its topology. Its order and algebraic structure make it into an ordered field.

  9. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry was split into two new subfields: synthetic geometry, which uses purely geometrical methods, and analytic geometry, which uses coordinates systemically. [23] Analytic geometry allows the study of curves unrelated to circles and lines.

  1. Ad

    related to: geometry undefined terms point fundamentals