enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kling–Gupta efficiency - Wikipedia

    en.wikipedia.org/wiki/Kling–Gupta_efficiency

    The Kling–Gupta efficiency (KGE) is a goodness-of-fit indicator widely used in the hydrologic sciences for comparing simulations to observations. It was created by hydrologic scientists Harald Kling and Hoshin Vijai Gupta. [ 1 ]

  3. Pointwise mutual information - Wikipedia

    en.wikipedia.org/wiki/Pointwise_mutual_information

    The mutual information (MI) of the random variables X and Y is the expected value of the PMI (over all possible outcomes). The measure is symmetric (⁡ (;) = ⁡ (;)). It can take positive or negative values, but is zero if X and Y are independent. Note that even though PMI may be negative or positive, its expected outcome over all joint ...

  4. Cohen's kappa - Wikipedia

    en.wikipedia.org/wiki/Cohen's_kappa

    Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories. The definition of is =, where p o is the relative observed agreement among raters, and p e is the hypothetical probability of chance agreement, using the observed data to calculate the probabilities of each observer randomly selecting each category.

  5. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    The van Genuchten–Gupta model is based on an inverted S-curve and applied to the response of crop yield to soil salinity. Examples of the application of the logistic S-curve to the response of crop yield (wheat) to both the soil salinity and depth to water table in the soil are shown in modeling crop response in agriculture.

  6. Informant (statistics) - Wikipedia

    en.wikipedia.org/wiki/Informant_(statistics)

    Since the score is a function of the observations, which are subject to sampling error, it lends itself to a test statistic known as score test in which the parameter is held at a particular value. Further, the ratio of two likelihood functions evaluated at two distinct parameter values can be understood as a definite integral of the score ...

  7. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  8. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.

  9. Risk score - Wikipedia

    en.wikipedia.org/wiki/Risk_score

    A formula (typically a simple sum of all accumulated points) that calculates the score. A set of thresholds that helps to translate the calculated score into a level of risk, or an equivalent formula or set of rules to translate the calculated score back into probabilities (leaving the nominal evaluation of severity to the practitioner).