enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...

  3. Bouguer anomaly - Wikipedia

    en.wikipedia.org/wiki/Bouguer_anomaly

    On Earth the effect on gravity of elevation is 0.3086 mGal m −1 decrease when going up, minus the gravity of the Bouguer plate, giving the Bouguer gradient of 0.1967 mGal m −1. More generally, for a mass distribution with the density depending on one Cartesian coordinate z only, gravity for any z is 2π G times the difference in mass per ...

  4. Physical geodesy - Wikipedia

    en.wikipedia.org/wiki/Physical_geodesy

    Near Earth's surface, the acceleration due to gravity, accurate to 2 significant figures, is 9.8 m/s 2 (32 ft/s 2). This means that, ignoring the effects of air resistance, the speed of an object falling freely will increase by about 9.8 metres per second (32 ft/s) every second.

  5. Eötvös effect - Wikipedia

    en.wikipedia.org/wiki/Eötvös_effect

    The Eötvös effect is the change in measured Earth's gravity caused by the change in centrifugal acceleration resulting from eastbound or westbound velocity.When moving eastbound, the object's angular velocity is increased (in addition to Earth's rotation), and thus the centrifugal force also increases, causing a perceived reduction in gravitational force.

  6. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    The force of gravity is weakest at the equator because of the centrifugal force caused by the Earth's rotation and because points on the equator are farthest from the center of the Earth. The force of gravity varies with latitude, and the resultant acceleration increases from about 9.780 m/s 2 at the Equator to about 9.832 m/s 2 at the poles ...

  7. Gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Gravity_anomaly

    The gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity measured at every point on its surface would be given precisely by a simple algebraic expression.

  8. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free-air correction adjusts measurements of gravity to what would have been measured at mean sea level, that is, on the geoid. The gravitational attraction of Earth below the measurement point and above mean sea level is ignored and it is imagined that the observed gravity is measured in air, hence the name.

  9. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.