Search results
Results from the WOW.Com Content Network
The number zero for n = 6 is an example of a more general phenomenon: associative magic squares do not exist for values of n that are singly even (equal to 2 modulo 4). [3] Every associative magic square of even order forms a singular matrix , but associative magic squares of odd order can be singular or nonsingular.
For example the following sequence can be used to form an order 3 magic square according to the Siamese method (9 boxes): 5, 10, 15, 20, 25, 30, 35, 40, 45 (the magic sum gives 75, for all rows, columns and diagonals). The magic sum in these cases will be the sum of the arithmetic progression used divided by the order of the magic square.
As a running example, we consider a 10×10 magic square, where we have divided the square into four quarters. The quarter A contains a magic square of numbers from 1 to 25, B a magic square of numbers from 26 to 50, C a magic square of numbers from 51 to 75, and D a magic square of numbers from 76 to 100.
Examples of broken diagonals from the number square in the image are as follows: 3,12,14,5; 10,1,7,16; 10,13,7,4; 15,8,2,9; 15,12,2,5; and 6,13,11,4. The fact that this square is a pandiagonal magic square can be verified by checking that all of its broken diagonals add up to the same constant:
In their book, Kathleen Ollerenshaw and David S. Brée give a method of construction and enumeration of all most-perfect magic squares. They also show that there is a one-to-one correspondence between reversible squares and most-perfect magic squares. For n = 36, there are about 2.7 × 10 44 essentially different most-perfect magic squares.
The largest magic constant of normal magic square which is also a: triangular number is 15 (solve the Diophantine equation x 2 = y 3 + 16y + 16, where y is divisible by 4); square number is 1 (solve the Diophantine equation x 2 = y 3 + 4y, where y is even); generalized pentagonal number is 171535 (solve the Diophantine equation x 2 = y 3 + 144y ...
The Brewers' 15-8 win over the Arizona Diamondbacks moved Milwaukee's magic number to clinch the National League Central Division to three. Brewers 15, D'backs 8: Milwaukee's magic number is down ...
The number of 4 × 4 pandiagonal magic squares using numbers 1-16 without duplicates is 384 (16 times 24, where 16 accounts for the translation and 24 accounts for the 4! ways to assign 1, 2, 4, and 8 to b, c, d, and e).