Search results
Results from the WOW.Com Content Network
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
The finite difference coefficients for a given stencil are fixed by the choice of node points. The coefficients may be calculated by taking the derivative of the Lagrange polynomial interpolating between the node points, [3] by computing the Taylor expansion around each node point and solving a linear system, [4] or by enforcing that the stencil is exact for monomials up to the degree of the ...
Marx identified three historical phases of development - the "mystical" differential calculus of Newton and Leibniz, the "rational" differential calculus of d'Alembert, and the "purely algebraic" differential calculus of Lagrange. [10] However, as Marx was not aware of the work of Cauchy, he did not carry his historical development any further ...
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
Itô's lemma can be used to derive the Black–Scholes equation for an option. [2] Suppose a stock price follows a geometric Brownian motion given by the stochastic differential equation dS = S(σdB + μ dt). Then, if the value of an option at time t is f(t, S t), Itô's lemma gives
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
In computational physics, the term advection scheme refers to a class of numerical discretization methods for solving hyperbolic partial differential equations. In the so-called upwind schemes typically, the so-called upstream variables are used to calculate the derivatives in a flow field. That is, derivatives are estimated using a set of data ...
In this mechanism the reactive intermediate species NO 3 is formed in the first step with rate r 1 and reacts with CO in the second step with rate r 2. However, NO 3 can also react with NO if the first step occurs in the reverse direction (NO + NO 3 → 2 NO 2) with rate r −1, where the minus sign indicates the rate of a reverse reaction.