enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convection (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Convection_(Heat_transfer)

    Convection-cooling is sometimes loosely assumed to be described by Newton's law of cooling. [6] Newton's law states that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings while under the effects of a breeze. The constant of proportionality is the heat transfer coefficient. [7]

  3. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is:

  4. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [10]

  5. Thermal balance of the underwater diver - Wikipedia

    en.wikipedia.org/wiki/Thermal_balance_of_the...

    When heat loss exceeds heat generation, body temperature will fall. [2] Exertion increases heat production by metabolic processes, but when breathing gas is cold and dense, heat loss due to the increased volume of gas breathed to support these metabolic processes can result in a net loss of heat, even if the heat loss through the skin is minimised.

  6. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    According to Schwarzschild's equation, the rate of fall in outward intensity is proportional to the density of GHGs (n) in the atmosphere and their absorption cross-sections (σ λ). Any anthropogenic increase in GHGs will slow down the rate of radiative cooling to space, i.e. produce a radiative forcing until a saturation point is reached.

  7. Combined forced and natural convection - Wikipedia

    en.wikipedia.org/wiki/Combined_forced_and...

    The second case is when natural convection acts in the opposite way of the forced convection. Consider a fan forcing air upward over a cold plate. [5] In this case, the buoyant force of the cold air naturally causes it to fall, but the air being forced upward opposes this natural motion.

  8. Radiative cooling - Wikipedia

    en.wikipedia.org/wiki/Radiative_cooling

    The term radiative cooling is generally used for local processes, though the same principles apply to cooling over geological time, which was first used by Kelvin to estimate the age of the Earth (although his estimate ignored the substantial heat released by radioisotope decay, not known at the time, and the effects of convection in the mantle).

  9. Earth's internal heat budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_internal_heat_budget

    Estimates of mantle primordial heat loss range between 7 and 15 TW, which is calculated as the remainder of heat after removal of core heat flow and bulk-Earth radiogenic heat production from the observed surface heat flow. [13] The early formation of the Earth's dense core could have caused superheating and rapid heat loss, and the heat loss ...