Search results
Results from the WOW.Com Content Network
To begin solving, we multiply each side of the equation by the least common denominator of all the fractions contained in the equation. In this case, the least common denominator is ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} .
One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
John Herschel, Description of a machine for resolving by inspection certain important forms of transcendental equations, 1832. In applied mathematics, a transcendental equation is an equation over the real (or complex) numbers that is not algebraic, that is, if at least one of its sides describes a transcendental function. [1]
A quartic equation where a 3 and a 1 are equal to 0 takes the form a 0 x 4 + a 2 x 2 + a 4 = 0 {\displaystyle a_{0}x^{4}+a_{2}x^{2}+a_{4}=0\,\!} and thus is a biquadratic equation , which is easy to solve: let z = x 2 {\displaystyle z=x^{2}} , so our equation becomes
The commented Poisson problem does not have a solution for any functional boundary conditions f 1, f 2, g 1, g 2; however, given f 1, f 2 it is always possible to find boundary functions g 1 *, g 2 * so close to g 1, g 2 as desired (in the weak convergence meaning) for which the problem has solution. This property makes it possible to solve ...
Pólya mentions that there are many reasonable ways to solve problems. [3] The skill at choosing an appropriate strategy is best learned by solving many problems. You will find choosing a strategy increasingly easy. A partial list of strategies is included: Guess and check [9] Make an orderly list [10] Eliminate possibilities [11] Use symmetry [12]
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.