enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    The energy–momentum relation is consistent with the familiar mass–energy relation in both its interpretations: E = mc2 relates total energy E to the (total) relativistic mass m (alternatively denoted mrel or mtot), while E0 = m0c2 relates rest energy E0 to (invariant) rest mass m0. Unlike either of those equations, the energy–momentum ...

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form: where is the mass and is the speed (magnitude of the velocity) of the body. In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules.

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz factor. {\displaystyle \gamma = {\frac {1} {\sqrt {1-\beta ^ {2}}}}} where and v is the relative velocity between two inertial frames. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t ...

  5. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The relativistic mass is the sum total quantity of energy in a body or system (divided by c2). Thus, the mass in the formula is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds. In the center of momentum frame, and the relativistic mass equals the rest mass.

  6. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The relativistic mass of a moving object is larger than the relativistic mass of an object at rest, because a moving object has kinetic energy. If the object moves slowly, the relativistic mass is nearly equal to the rest mass and both are nearly equal to the classical inertial mass (as it appears in Newton's laws of motion). If the object ...

  7. Relativistic particle - Wikipedia

    en.wikipedia.org/wiki/Relativistic_particle

    Relativistic particle. In particle physics, a relativistic particle is an elementary particle with kinetic energy greater than or equal to its rest-mass energy given by Einstein's relation, , or specifically, of which the velocity is comparable to the speed of light . [1]

  8. Bondi k-calculus - Wikipedia

    en.wikipedia.org/wiki/Bondi_k-calculus

    Bondi k-calculus is a method of teaching special relativity popularised by Sir Hermann Bondi, that has been used in university-level physics classes (e.g. at the University of Oxford [1]), and in some relativity textbooks. [2]: 58–65 [3] The usefulness of the k -calculus is its simplicity. Many introductions to relativity begin with the ...

  9. Velocity-addition formula - Wikipedia

    en.wikipedia.org/wiki/Velocity-addition_formula

    The special theory of relativity, formulated in 1905 by Albert Einstein, implies that addition of velocities does not behave in accordance with simple vector addition.. In relativistic physics, a velocity-addition formula is an equation that specifies how to combine the velocities of objects in a way that is consistent with the requirement that no object's speed can exceed the speed of light.