Search results
Results from the WOW.Com Content Network
When a reinforced concrete member is put in tension, after cracking, the member elongates by widening of cracks and by formation of new cracks. Figure 1 Formation of internal cracks. Ignoring the small elastic strain in the concrete between the cracks, we can relate the crack width to the strain of the member by:
Concrete fracture analysis is part of fracture mechanics that studies crack propagation and related failure modes in concrete. [17] As it is widely used in construction, fracture analysis and modes of reinforcement are an important part of the study of concrete, and different concretes are characterized in part by their fracture properties. [ 18 ]
The curing of concrete when it continues to harden after its initial setting and progressively develops its mechanical strength is a critical phase to avoid unwanted cracks in concrete. Depending on the temperature (summer or winter conditions) and thus on the cement hydration kinetics controlling the setting and hardening rate of concrete ...
Crack growth, as shown by fracture mechanics, is exponential in nature; meaning that the crack growth rate is a function of an exponent of the current crack size (see Paris' law). This means that only the largest cracks influence the overall strength of a structure; small internal damages do not necessarily decrease the strength.
Autogenous self-healing crack. Self-healing concrete is characterized as the capability of concrete to fix its cracks on its own autogenously or autonomously. It not only seals the cracks but also partially or entirely recovers the mechanical properties of the structural elements. This kind of concrete is also known as self-repairing concrete.
Typical crack pattern of the alkali-silica reaction (ASR). The gel exudations through the concrete cracks have a characteristic yellow color and a high pH. The fatty aspect of the exudations imbibing the concrete porosity along the cracks is also a distinctive feature of ASR. The alkali-silica reaction as a chemical cycle process
Collapsed barn at Hörsne, Gotland, Sweden Building collapse due to snow weight. Structural integrity and failure is an aspect of engineering that deals with the ability of a structure to support a designed structural load (weight, force, etc.) without breaking and includes the study of past structural failures in order to prevent failures in future designs.
The crack arrestor can be as simple as a thickened region of metal, or may be constructed of a laminated or woven material that can be designed to withstand deformation without failure. When correctly applied, the technique is capable of redirecting movement and safely distributing stresses. [1] It is compatible with fail-safe design practices. [2]