Search results
Results from the WOW.Com Content Network
The Monge gauge has two obvious limitations: If the average surface is not plane, then the Monge gauge only makes sense on length scales smaller than the curvature of the average surface. And the Monge gauge fails completely if the surface is so strongly bent that there are overhangs (points x,y corresponding to more than one z ).
Curvature of general surfaces was first studied by Euler. In 1760 [4] he proved a formula for the curvature of a plane section of a surface and in 1771 [5] he considered surfaces represented in a parametric form. Monge laid down the foundations of their theory in his classical memoir L'application de l'analyse à la géometrie which
The variation formula computations above define the principal symbol of the mapping which sends a pseudo-Riemannian metric to its Riemann tensor, Ricci tensor, or scalar curvature.
The Monge cone at a given point (x 0, ..., x n) is the zero locus of the equation in the tangent space at the point. The Monge equation is unrelated to the (second-order) Monge–Ampère equation . References
In mathematics, a (real) Monge–Ampère equation is a nonlinear second-order partial differential equation of special kind. A second-order equation for the unknown function u of two variables x,y is of Monge–Ampère type if it is linear in the determinant of the Hessian matrix of u and in the second-order partial derivatives of u.
Any surface with an isolated umbilic point at the origin can be expressed as a Monge form parameterisation = (+) + (+ + +) + …, where is the unique principal curvature. The type of umbilic is classified by the cubic form from the cubic part and corresponding Jacobian cubic form.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
For example, for the tangent bundle of a Riemannian manifold, the structure group is O(n) and Ω is a 2-form with values in the Lie algebra of O(n), i.e. the antisymmetric matrices. In this case the form Ω is an alternative description of the curvature tensor, i.e. (,) = (,),