Search results
Results from the WOW.Com Content Network
In the equation 7x − 5 = 2, the sides of the equation are expressions. In mathematics, an expression is a written arrangement of symbols following the context-dependent, syntactic conventions of mathematical notation. Symbols can denote numbers, variables, operations, and functions. [1]
If the expression in parentheses may be calculated, that is, if the variables in the expression in the parentheses are known numbers, then it is simpler to write the calculation +. and juxtapose that new number with the remaining unknown number. Terms combined in an expression with a common, unknown factor (or multiple unknown factors) are ...
Algebraic expression notation: 1 – power (exponent) 2 – coefficient 3 – term 4 – operator 5 – constant term – constant – variables. A coefficient is a numerical value, or letter representing a numerical constant, that multiplies a variable (the operator is omitted).
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include: Simplification of algebraic expressions, in computer algebra; Simplification of boolean expressions i.e. logic optimization
R-diagrams can be used to easily simplify complicated logical expressions, using a step-by-step process. Using order of operations, logical operators are applied to R-diagrams in the proper sequence. Finally, the result is an R-diagram that can be converted back into a simpler logical expression. For example, take the following expression:
[2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9. When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of ...
Simplifying this further gives us the solution x = −3. It is easily checked that none of the zeros of x (x + 1)(x + 2) – namely x = 0, x = −1, and x = −2 – is a solution of the final equation, so no spurious solutions were introduced.
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.