Search results
Results from the WOW.Com Content Network
The above -sphere exists in (+) -dimensional Euclidean space and is an example of an -manifold. The volume form ω {\displaystyle \omega } of an n {\displaystyle n} -sphere of radius r {\displaystyle r} is given by
The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions ( theorems ) from these.
It can be realized non-degenerately in some non-Euclidean spaces, such as on the surface of a sphere or torus. For example, digon can be realised non-degenerately as a spherical lune . A monogon {1} could also be realised on the sphere as a single point with a great circle through it. [ 7 ]
Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.
In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).
The symmetry group of the sphere (n=3) or hypersphere. so(n) n(n−1)/2 SO(n) special orthogonal group: real orthogonal matrices with determinant 1 Y 0 Z n=2 Z 2 n>2 Spin(n) n>2 SO(1) is a single point and SO(2) is isomorphic to the circle group, SO(3) is the rotation group of the sphere. so(n) n(n−1)/2 SE(n)
The sphere is an example of a surface. The unit sphere of implicit equation. x 2 + y 2 + z 2 – 1 = 0. may be covered by an atlas of six charts: the plane z = 0 divides the sphere into two half spheres (z > 0 and z < 0), which may both be mapped on the disc x 2 + y 2 < 1 by the projection on the xy plane of coordinates. This provides two ...