Search results
Results from the WOW.Com Content Network
A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet Σ. Σ may be a human language alphabet, for example, the letters A through Z and other applications may use a binary alphabet (Σ = {0,1}) or a DNA alphabet (Σ = {A,C,G,T}) in bioinformatics.
The std::string class is the standard representation for a text string since C++98. The class provides some typical string operations like comparison, concatenation, find and replace, and a function for obtaining substrings. An std::string can be constructed from a C-style string, and a C-style string can also be obtained from one. [7]
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
It stores the lengths of the longest common prefixes (LCPs) between all pairs of consecutive suffixes in a sorted suffix array. For example, if A := [aab, ab, abaab, b, baab] is a suffix array, the longest common prefix between A[1] = aab and A[2] = ab is a which has length 1, so H[2] = 1 in the LCP array H.
We assume all the substrings have a fixed length m. A naïve way to search for k patterns is to repeat a single-pattern search taking O(n+m) time, totaling in O((n+m)k) time. In contrast, the above algorithm can find all k patterns in O(n+km) expected time, assuming that a hash table check works in O(1) expected time.
In functional and list-based languages a string is represented as a list (of character codes), therefore all list-manipulation procedures could be considered string functions. However such languages may implement a subset of explicit string-specific functions as well.
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
Suppose that at an alignment k 1, P is compared with T down to character c of T. Then if P is shifted to k 2 such that its left end is between c and k 1, in the next comparison phase a prefix of P must match the substring T[(k 2 - n)..k 1]. Thus if the comparisons get down to position k 1 of T, an occurrence of P can be recorded without ...