enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Landauer's principle - Wikipedia

    en.wikipedia.org/wiki/Landauer's_principle

    Landauer's principle is a physical principle pertaining to a lower theoretical limit of energy consumption of computation.It holds that an irreversible change in information stored in a computer, such as merging two computational paths, dissipates a minimum amount of heat to its surroundings. [1]

  3. Associative containers (C++) - Wikipedia

    en.wikipedia.org/wiki/Associative_containers_(C++)

    lower_bound: lower_bound: lower_bound: lower_bound: Returns an iterator to the first element with a key not less than the given value. upper_bound: upper_bound: upper_bound: upper_bound: Returns an iterator to the first element with a key greater than a certain value. Observers key_comp: key_comp: key_comp: key_comp: Returns the key comparison ...

  4. Gilbert–Varshamov bound for linear codes - Wikipedia

    en.wikipedia.org/wiki/Gilbert–Varshamov_bound...

    The Gilbert–Varshamov bound for linear codes is related to the general Gilbert–Varshamov bound, which gives a lower bound on the maximal number of elements in an error-correcting code of a given block length and minimum Hamming weight over a field. This may be translated into a statement about the maximum rate of a code with given length ...

  5. Bin packing problem - Wikipedia

    en.wikipedia.org/wiki/Bin_packing_problem

    In Computers and Intractability [8]: 226 Garey and Johnson list the bin packing problem under the reference [SR1]. They define its decision variant as follows. Instance: Finite set of items, a size () + for each , a positive integer bin capacity , and a positive integer .

  6. Christofides algorithm - Wikipedia

    en.wikipedia.org/wiki/Christofides_algorithm

    The cost of the solution produced by the algorithm is within 3/2 of the optimum. To prove this, let C be the optimal traveling salesman tour. Removing an edge from C produces a spanning tree, which must have weight at least that of the minimum spanning tree, implying that w(T) ≤ w(C) - lower bound to the cost of the optimal solution.

  7. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    The lower bound on worst-case running time of output-sensitive convex hull algorithms was established to be Ω(n log h) in the planar case. [1] There are several algorithms which attain this optimal time complexity. The earliest one was introduced by Kirkpatrick and Seidel in 1986 (who called it "the ultimate convex hull algorithm").

  8. Master theorem (analysis of algorithms) - Wikipedia

    en.wikipedia.org/wiki/Master_theorem_(analysis...

    The theorem below also assumes that, as a base case for the recurrence, () = when is less than some bound >, the smallest input size that will lead to a recursive call. Recurrences of this form often satisfy one of the three following regimes, based on how the work to split/recombine the problem f ( n ) {\displaystyle f(n)} relates to the ...

  9. Approximation algorithm - Wikipedia

    en.wikipedia.org/wiki/Approximation_algorithm

    Clearly, the performance guarantee is greater than or equal to 1 and equal to 1 if and only if y is an optimal solution. If an algorithm A guarantees to return solutions with a performance guarantee of at most r(n), then A is said to be an r(n)-approximation algorithm and has an approximation ratio of r(n).