Search results
Results from the WOW.Com Content Network
Potassium ferrioxalate contains the iron(III) complex [Fe(C 2 O 4) 3] 3−. In chemistry, iron(III) or ferric refers to the element iron in its +3 oxidation state. Ferric chloride is an alternative name for iron(III) chloride (FeCl 3). The adjective ferrous is used instead for iron(II) salts, containing the cation Fe 2+.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Suppose the same iron block is reshaped into a bowl. It still weighs 1 ton, but when it is put in water, it displaces a greater volume of water than when it was a block. The deeper the iron bowl is immersed, the more water it displaces, and the greater the buoyant force acting on it. When the buoyant force equals 1 ton, it will sink no farther.
A number of other descriptive terms are also used to qualify the extent of solubility for a given application. For example, U.S. Pharmacopoeia gives the following terms, according to the mass m sv of solvent required to dissolve one unit of mass m su of solute: [8] (The solubilities of the examples are approximate, for water at 20–25 °C.)
When metallic iron (oxidation state 0) is placed in a solution of hydrochloric acid, iron(II) chloride is formed, with release of hydrogen gas, by the reaction Fe 0 + 2 H + → Fe 2+ + H 2. Iron(II) is oxidized by hydrogen peroxide to iron(III), forming a hydroxyl radical and a hydroxide ion in the process. This is the Fenton reaction.
Iron also occurs in higher oxidation states, e.g., the purple potassium ferrate (K 2 FeO 4), which contains iron in its +6 oxidation state. The anion [FeO 4] – with iron in its +7 oxidation state, along with an iron(V)-peroxo isomer, has been detected by infrared spectroscopy at 4 K after cocondensation of laser-ablated Fe atoms with a ...
Upwelling recycles iron and causes higher deep water iron concentrations. On average there is 0.07±0.04 nmol Fe kg −1 at the surface (<200 m) and 0.76±0.25 nmol Fe kg −1 at depth (>500 m). [21] Therefore, upwelling zones contain more iron than other areas of the surface oceans. Soluble iron in ferrous form is bioavailable for utilization ...
Any substance that, when dissolved in water, increases the concentration of H + ions, or, more correctly, of hydronium ions (H 3 O +), in the resulting aqueous solution. [1] The definition is similar to that of a Brønsted–Lowry acid. Contrast Arrhenius base. Arrhenius base Any substance that, when dissolved in water, increases the ...