enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    For example, for a speed of 10 km/s (22,000 mph) the correction to the non-relativistic kinetic energy is 0.0417 J/kg (on a non-relativistic kinetic energy of 50 MJ/kg) and for a speed of 100 km/s it is 417 J/kg (on a non-relativistic kinetic energy of 5 GJ/kg). The relativistic relation between kinetic energy and momentum is given by

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.

  4. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    The kinetic energy, , is defined as = =, ... The relativistic energy–momentum equation holds for all particles, even for massless particles for which m 0 = 0. In ...

  5. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    Relativistic kinetic energy: The relativistic kinetic energy relation takes the slightly modified form: = = As is a function of , the non-relativistic limit gives / =, as expected from Newtonian considerations.

  6. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:

  7. Relativistic particle - Wikipedia

    en.wikipedia.org/wiki/Relativistic_particle

    These two types of relativistic particles are remarked as massless and massive, respectively. In experiments, massive particles are relativistic when their kinetic energy is comparable to or greater than the energy = corresponding to their rest mass. In other words, a massive particle is relativistic when its total mass-energy is at least twice ...

  8. Dirac equation - Wikipedia

    en.wikipedia.org/wiki/Dirac_equation

    The left side represents the square of the momentum operator divided by twice the mass, which is the non-relativistic kinetic energy. Because relativity treats space and time as a whole, a relativistic generalization of this equation requires that space and time derivatives must enter symmetrically as they do in the Maxwell equations that ...

  9. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    This implies the kinetic energy, in both Newtonian mechanics and relativity, is 'frame dependent', so that the amount of relativistic energy that an object is measured to have depends on the observer. The relativistic mass of an object is given by the relativistic energy divided by c 2. [10]