Search results
Results from the WOW.Com Content Network
These oil-based fluids often oxidize and form sludge during quenching, which consequently lowers the efficiency of the process. The cooling rate of oil is much less than water. Intermediate rates between water and oil can be obtained with a purpose-formulated quenchant, a substance with an inverse solubility that therefore deposits on the ...
Tempering is most often performed on steel that has been heated above its upper critical (A 3) temperature and then quickly cooled, in a process called quenching, using methods such as immersing the hot steel in water, oil, or forced-air. The quenched steel, being placed in or very near its hardest possible state, is then tempered to ...
The metal part is then removed from the bath and cooled in air to room temperature to permit the austenite to transform to martensite. Martempering is a method by which the stresses and strains generated during the quenching of a steel component can be controlled. In martempering, steel is heated to above the critical range to make it all ...
Cooling speeds, from fastest to slowest, go from brine, polymer (i.e. mixtures of water + glycol polymers), freshwater, oil, and forced air. However, quenching certain steel too fast can result in cracking, which is why high-tensile steels such as AISI 4140 should be quenched in oil, tool steels such as ISO 1.2767 or H13 hot work tool steel ...
Steel which has a carbon content greater than ~0.25% can be direct-hardened by heating to around 600°C, and then quickly cooling, often by immersing in water or oil, known as quenching. Hardening is desirable for metal components because it gives increased strength and wear resistance, the tradeoff being that hardened steel is generally more ...
The quenching converts the billet's surface layer to martensite, and causes it to shrink. The shrinkage pressurizes the core, helping to form the correct crystal structures. The core remains hot, and austenitic. A microprocessor controls the water flow to the quench box, to manage the temperature difference through the cross-section of the bars.
For a eutectoid steel (0.76% C), between 6 and 10% of austenite, called retained austenite, will remain. The percentage of retained austenite increases from insignificant for less than 0.6% C steel, to 13% retained austenite at 0.95% C and 30–47% retained austenite for a 1.4% carbon steel. A very rapid quench is essential to create martensite.
Once removed from the oven, the workpieces are often quickly cooled off in a process known as quench hardening. Typical methods of quench hardening materials involve media such as air, water, oil, or salt. Salt is used as a medium for quenching usually in the form of brine (salt water). Brine provides faster cooling rates than water.