Search results
Results from the WOW.Com Content Network
Brocard's problem is a problem in mathematics that seeks integer values of such that ! + is a perfect square, where ! is the factorial. Only three values of n {\displaystyle n} are known — 4, 5, 7 — and it is not known whether there are any more.
The latter is far from optimal, but the former, which changes only one variable at a time, is worse. See also the factorial experimental design methods pioneered by Sir Ronald A. Fisher. Reasons for disfavoring OFAT include: OFAT requires more runs for the same precision in effect estimation; OFAT cannot estimate interactions
Hindu scholars have been using factorial formulas since at least 1150, when Bhāskara II mentioned factorials in his work Līlāvatī, in connection with a problem of how many ways Vishnu could hold his four characteristic objects (a conch shell, discus, mace, and lotus flower) in his four hands, and a similar problem for a ten-handed god. [4]
(n factorial) is the number of n-permutations; !n (n subfactorial) is the number of derangements – n-permutations where all of the n elements change their initial places. In combinatorial mathematics , a derangement is a permutation of the elements of a set in which no element appears in its original position.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
Christer showed them how they could test two additional factors "for free" – without increasing the number of runs and without reducing the accuracy of their estimate of the cage effect. In this arrangement, called a 2×2×2 factorial design, each of the three factors would be run at two levels and all the eight possible combinations included.
The response variable is measured using a combination of factors at different levels, and each unique combination is known as a run. To reduce the number of runs in comparison to a full factorial, the experiments are designed to confound different effects and interactions, so that their impacts cannot be distinguished.
Combinatorial explosion is sometimes used to justify the intractability of certain problems. [ 1 ] [ 2 ] Examples of such problems include certain mathematical functions , the analysis of some puzzles and games, and some pathological examples which can be modelled as the Ackermann function .