enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson limit theorem - Wikipedia

    en.wikipedia.org/wiki/Poisson_limit_theorem

    In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem

  3. Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Poisson's_equation

    Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.

  4. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  5. Renewal theory - Wikipedia

    en.wikipedia.org/wiki/Renewal_theory

    For example, if the renewal process is modelling the numbers of breakdown of different machines, then the holding time represents the time between one machine breaking down before another one does. The Poisson process is the unique renewal process with the Markov property , [ 2 ] as the exponential distribution is the unique continuous random ...

  6. Limiting case (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limiting_case_(mathematics)

    In electricity and magnetism, the long wavelength limit is the limiting case when the wavelength is much larger than the system size. In economics , two limiting cases of a demand curve or supply curve are those in which the elasticity is zero (the totally inelastic case) or infinity (the infinitely elastic case).

  7. Negative binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Negative_binomial_distribution

    The negative binomial distribution has a variance /, with the distribution becoming identical to Poisson in the limit for a given mean (i.e. when the failures are increasingly rare). This can make the distribution a useful overdispersed alternative to the Poisson distribution, for example for a robust modification of Poisson regression .

  8. Siméon Denis Poisson - Wikipedia

    en.wikipedia.org/wiki/Siméon_Denis_Poisson

    Baron Siméon Denis Poisson (/ p w ɑː ˈ s ɒ̃ /, [1] US also / ˈ p w ɑː s ɒ n /; French: [si.me.ɔ̃ də.ni pwa.sɔ̃]; 21 June 1781 – 25 April 1840) was a French mathematician and physicist who worked on statistics, complex analysis, partial differential equations, the calculus of variations, analytical mechanics, electricity and magnetism, thermodynamics, elasticity, and fluid ...

  9. Dirichlet problem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_problem

    The solution of the Dirichlet problem using Sobolev spaces for planar domains can be used to prove the smooth version of the Riemann mapping theorem. Bell (1992) has outlined a different approach for establishing the smooth Riemann mapping theorem, based on the reproducing kernels of Szegő and Bergman, and in turn used it to solve the ...