enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gray code - Wikipedia

    en.wikipedia.org/wiki/Gray_code

    It is known today that such codes do exist for n = 2, 5, 6, 7, and 8, and do not exist for n = 3 or 4. An example of an 8-bit Beckett–Gray code can be found in Donald Knuth's Art of Computer Programming. [13]

  3. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    To compute an n-bit binary CRC, line the bits representing the input in a row, and position the (n + 1)-bit pattern representing the CRC's divisor (called a "polynomial") underneath the left end of the row. In this example, we shall encode 14 bits of message with a 3-bit CRC, with a polynomial x 3 + x + 1.

  4. Counter (digital) - Wikipedia

    en.wikipedia.org/wiki/Counter_(digital)

    An asynchronous (ripple) counter is a "chain" of toggle (T) flip-flops in which the least-significant flip-flop (bit 0) is clocked by an external signal (the counter input clock), and all other flip-flops are clocked by the output of the nearest, less significant flip-flop (e.g., bit 0 clocks the bit 1 flip-flop, bit 1 clocks the bit 2 flip ...

  5. Bit numbering - Wikipedia

    en.wikipedia.org/wiki/Bit_numbering

    This table illustrates an example of an 8 bit signed decimal value using the two's complement method. The MSb most significant bit has a negative weight in signed integers, in this case -2 7 = -128. The other bits have positive weights. The lsb (least significant bit) has weight 1. The signed value is in this case -128+2 = -126.

  6. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...

  7. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    All bit positions that are powers of two (have a single 1 bit in the binary form of their position) are parity bits: 1, 2, 4, 8, etc. (1, 10, 100, 1000) All other bit positions, with two or more 1 bits in the binary form of their position, are data bits. Each data bit is included in a unique set of 2 or more parity bits, as determined by the ...

  8. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    A bit is a binary digit that represents one of two states. The concept of a bit can be understood as a value of either 1 or 0, on or off, yes or no, true or false, or encoded by a switch or toggle of some kind. While a single bit, on its own, is able to represent only two values, a string of bits may be used to represent larger values. For ...

  9. Ternary numeral system - Wikipedia

    en.wikipedia.org/wiki/Ternary_numeral_system

    A ternary / ˈ t ɜːr n ər i / numeral system (also called base 3 or trinary [1]) has three as its base.Analogous to a bit, a ternary digit is a trit (trinary digit).One trit is equivalent to log 2 3 (about 1.58496) bits of information.