enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    Chromium and copper have electron configurations [Ar] 3d 5 4s 1 and [Ar] 3d 10 4s 1 respectively, i.e. one electron has passed from the 4s-orbital to a 3d-orbital to generate a half-filled or filled subshell. In this case, the usual explanation is that "half-filled or completely filled subshells are particularly stable arrangements of electrons".

  3. Periodic table (electron configurations) - Wikipedia

    en.wikipedia.org/wiki/Periodic_table_(electron...

    Configurations of elements 109 and above are not available. Predictions from reliable sources have been used for these elements. Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2

  4. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    Neutrons do not affect the electron configuration. Atoms of a chemical element that differ only in neutron number are called isotopes . For example, carbon , with atomic number 6, has an abundant isotope carbon-12 with 6 neutrons and a rare isotope carbon-13 with 7 neutrons.

  5. Isotope - Wikipedia

    en.wikipedia.org/wiki/Isotope

    A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.

  6. Neutron detection - Wikipedia

    en.wikipedia.org/wiki/Neutron_detection

    Decay: Outside the nucleus, free neutrons are unstable and have a mean lifetime of 885.7 ± 0.8 s (about 14 minutes, 46 seconds). [1] Free neutrons decay by emission of an electron and an electron antineutrino to become a proton, a process known as beta decay: [2] n 0 → p + + e − + ν e. Although the p + and e −

  7. Isotopes of copper - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_copper

    Copper (29 Cu) has two stable isotopes, 63 Cu and 65 Cu, along with 28 radioisotopes. The most stable radioisotope is 67 Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β + decay, while isotopes with atomic masses above 65 tend to ...

  8. Neutron activation analysis - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation_analysis

    Neutron activation analysis is a sensitive multi-element analytical technique used for both qualitative and quantitative analysis of major, minor, trace and rare elements.. NAA was discovered in 1936 by Hevesy and Levi, who found that samples containing certain rare-earth elements became highly radioactive after exposure to a source of neutrons

  9. Nuclear shell model - Wikipedia

    en.wikipedia.org/wiki/Nuclear_shell_model

    Therefore, a nucleus with an even number of protons and an even number of neutrons has 0 spin and positive parity. A nucleus with an even number of protons and an odd number of neutrons (or vice versa) has the parity of the last neutron (or proton), and the spin equal to the total angular momentum of this neutron (or proton).