enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    In numerical analysis, the Runge–Kutta methods (English: / ˈ r ʊ ŋ ə ˈ k ʊ t ɑː / ⓘ RUUNG-ə-KUUT-tah [1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]

  3. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    All are implicit methods, have order 2s − 2 and they all have c 1 = 0 and c s = 1. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages.

  4. List of numerical libraries - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_libraries

    Hermes Project: C++/Python library for rapid prototyping of space- and space-time adaptive hp-FEM solvers. IML++ is a C++ library for solving linear systems of equations, capable of dealing with dense, sparse, and distributed matrices. IT++ is a C++ library for linear algebra (matrices and vectors), signal processing and communications ...

  5. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    "Approximate Solution of Ordinary Differential Equations and Their Systems Through Discrete and Continuous Embedded Runge-Kutta Formulae and Upgrading Their Order". Computers & Mathematics with Applications .

  6. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1). The simplicity of this definition, which is matched in many ...

  7. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    For x > 1 let π 0 (x) = π(x) − ⁠ 1 / 2 ⁠ when x is a prime number, and π 0 (x) = π(x) otherwise. Bernhard Riemann, in his work On the Number of Primes Less Than a Given Magnitude, proved that π 0 (x) is equal to [9] Riemann's explicit formula using the first 200 non-trivial zeros of the zeta function

  8. SymPy - Wikipedia

    en.wikipedia.org/wiki/SymPy

    mpmath: a Python library for arbitrary-precision floating-point arithmetic [15] SympyCore: another Python computer algebra system [16] SfePy: Software for solving systems of coupled partial differential equations (PDEs) by the finite element method in 1D, 2D and 3D. [17] GAlgebra: Geometric algebra module (previously sympy.galgebra). [18]

  9. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    This was proved by Leonhard Euler in 1737, [1] and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series).