enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    In electrical engineering and control theory, a Bode plot (/ ˈboʊdi / BOH-dee) is a graph of the frequency response of a system. It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik ...

  3. Hendrik Wade Bode - Wikipedia

    en.wikipedia.org/wiki/Hendrik_Wade_Bode

    Hendrik Wade Bode (/ ˈboʊdi / BOH-dee, Dutch: [ˈboːdə]; [1] December 24, 1905 – June 21, 1982) [1] was an American engineer, researcher, inventor, author and scientist, of Dutch ancestry. As a pioneer of modern control theory and electronic telecommunications he revolutionized both the content and methodology of his chosen fields of ...

  4. Control theory - Wikipedia

    en.wikipedia.org/wiki/Control_theory

    Control theory is a field of control engineering and applied mathematics that deals with the control of ... Z transform, Bode plot, root locus, and Nyquist ...

  5. Phase margin - Wikipedia

    en.wikipedia.org/wiki/Phase_margin

    Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.

  6. Frequency response - Wikipedia

    en.wikipedia.org/wiki/Frequency_response

    Frequency response. In signal processing and electronics, the frequency response of a system is the quantitative measure of the magnitude and phase of the output as a function of input frequency. [1] The frequency response is widely used in the design and analysis of systems, such as audio and control systems, where they simplify mathematical ...

  7. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    Classical control theory is a branch of control theory that deals with the behavior of dynamical systems with inputs, and how their behavior is modified by feedback, using the Laplace transform as a basic tool to model such systems. The usual objective of control theory is to control a system, often called the plant, so its output follows a ...

  8. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    Bode magnitude plot for the voltages across the elements of an RLC series circuit. Natural frequency ω 0 = 1 rad/s, damping ratio ζ = 0.4. Sinusoidal steady state is represented by letting s = jω, where j is the imaginary unit. Taking the magnitude of the above equation with this substitution:

  9. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in ...